Nilai lim_(x→3)⁡ sin⁡(2x-6)/(√(4-x)-1)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 3} \ \frac{\sin (2x-6)}{\sqrt{4-x}-1} = \cdots \)

  1. 4
  2. 2
  3. 0
  4. -2
  5. -4

(SBMPTN 2018)

Pembahasan:

\begin{aligned} \lim_{x \to 3} \ \frac{\sin (2x-6)}{\sqrt{4-x}-1} &= \lim_{x \to 3} \ \frac{\sin (2x-6)}{\sqrt{4-x}-1} \times \frac{\sqrt{4-x}+1}{\sqrt{4-x}+1} \\[8pt] &= \lim_{x \to 3} \ \frac{(\sqrt{4-x}+1)\sin (2x-6)}{(4-x)-1} \\[8pt] &= \lim_{x \to 3} \ \frac{(\sqrt{4-x}+1)\sin 2(x-3)}{-(x-3)} \\[8pt] &= \lim_{x \to 3} \ \frac{(\sqrt{4-x}+1)}{-1} \cdot \lim_{x \to 3} \ \frac{\sin 2(x-3)}{(x-3)} \\[8pt] &= \frac{(\sqrt{4-3} + 1)}{-1} \cdot 2 = \frac{\sqrt{1}+1}{-1} \cdot 2 \\[8pt] &= -4 \end{aligned}

Jawaban E.